You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mamlr/R/actorizer.R

54 lines
3.3 KiB

#' Updater function for elasticizer: Conduct actor searches
#'
#' Updater function for elasticizer: Conduct actor searches
#' @param out Does not need to be defined explicitly! (is already parsed in the elasticizer function)
#' @param localhost Defaults to false. When true, connect to a local Elasticsearch instance on the default port (9200)
#' @param ids List of actor ids
#' @param prefix Regex containing prefixes that should be excluded from hits
#' @param postfix Regex containing postfixes that should be excluded from hits
#' @param identifier String used to mark highlights. Should be a lowercase string
#' @param udmodel The udpipe model used for parsing every hit
#' @param ver Short string (preferably a single word/sequence) indicating the version of the updated document (i.e. for a udpipe update this string might be 'udV2')
#' @param es_super Password for write access to ElasticSearch
#' @return As this is a nested function used within elasticizer, there is no return output
#' @export
#' @examples
#' actorizer(out, localhost = F, ids, type, prefix, postfix, identifier, udmodel, es_super)
actorizer <- function(out, localhost = F, ids, type, prefix, postfix, identifier, udmodel, es_super, ver) {
sentencizer <- function(row, out, udmodel, ids, prefix, postfix, identifier) {
### If no pre or postfixes, match *not nothing* i.e. anything
if (is.na(prefix) || prefix == '') {
prefix = '$^'
}
if (is.na(postfix) || postfix == '') {
postfix = '$^'
}
### Also needs fix for empty strings (non-NA)
doc <- out[row,]
ud <- as.data.frame(udpipe_annotate(udmodel, x = doc$merged, parser = "none", doc_id = doc$`_id`))
sentence_count <- length(unique(ud$sentence))
ud <- ud %>%
filter(grepl(paste0(identifier), sentence)) %>% # Only select sentences that contain the identifier
filter(!str_detect(sentence, postfix)) %>% # Filter out sentences with matching postfixes (false positives)
filter(!str_detect(sentence, prefix)) %>% # Filter out sentences with matching prefixes (false positives)
filter(grepl(paste0(identifier,'.*'), token)) %>% # Only select tokens that start with the identifier
group_by(doc_id) %>%
summarise(
sentence_id = list(list(as.integer(sentence_id))),
token_id = list(list(as.integer(token_id))),
text = list(list(unique(as.character(sentence))))
)
occurences <- length(unique(ud$sentence_id)) # Number of sentences in which actor occurs
prominence <- occurences/sentence_count # Relative prominence of actor in article (number of occurences/total # sentences)
rel_first <- 1-(ud$sentence_id[[1]][[1]][1]/sentence_count) # Relative position of first occurence at sentence level
return(data.frame(ud,occ = occurences,prom = prominence,rel_first = rel_first, ids = I(list(list(ids)))))
}
out <- out_parser(out, field = 'highlight', clean = F)
ids <- fromJSON(ids)
updates <- bind_rows(mclapply(seq(1,length(out[[1]]),1), sentencizer, out = out, ids = ids, postfix = postfix, prefix=prefix, identifier=identifier, udmodel = udmodel, mc.cores = detectCores()))
bulk <- apply(updates, 1, bulk_writer, varname ='actorsDetail', type = 'add', ver = ver)
bulk <- c(bulk,apply(updates[c(1,8)], 1, bulk_writer, varname='actors', type = 'add', ver = ver))
return(elastic_update(bulk, es_super = es_super, localhost = localhost))
}