dfm_gen: remove multicore, update merger() code elasticizer: changed filenaming scheme for dump option merger: Fixed bug where an NA lemma would cause the entire document to become NA. Now the NA lemmas are filtered out before merging ud_update: removed parallel processing, changed script to save bulk updates in .Rds files instead of sending them straight awaymaster
parent
5d99ec9509
commit
4b4d860235
@ -0,0 +1,47 @@
|
||||
#' Merges list of lemmas back into a pseudo-document
|
||||
#'
|
||||
#' Merges list of lemmas back into a pseudo-document
|
||||
#' @param row A row number form the Elasticizer-generated data frame
|
||||
#' @param words String indicating the number of words to keep from each document (maximum document length), 999 indicates the whole document
|
||||
#' @param out The elasticizer-generated data frame
|
||||
#' @param text String indicating whether the "merged" field will contain the "full" text, old-style "lemmas" (will be deprecated), new-style "ud"
|
||||
#' @param clean Boolean indicating whether the results should be cleaned by removing words matching regex (see code).
|
||||
#' @return A documentified string of lemmas, one document at a time
|
||||
#' @export
|
||||
#' @examples
|
||||
#' merger(1, words = '999', out, text)
|
||||
#################################################################################################
|
||||
#################################### Reconstructing documents from lemmas########################
|
||||
#################################################################################################
|
||||
## Only merging lemmas for now, feature selection has no impact on junk classification
|
||||
merger_old <- function(row, out, text, clean) {
|
||||
df <- out[row,]
|
||||
# Mergin lemmas into single string
|
||||
if (text == 'lemmas') {
|
||||
lemmas <- paste(str_split(df$`_source.tokens.lemmas`, "\\|")[[1]],collapse = ' ')
|
||||
}
|
||||
if (text == 'ud') {
|
||||
lemmas <- paste0(df$`_source.ud`[[1]]$lemma[[1]], collapse = ' ')
|
||||
}
|
||||
if (text == 'ud_upos') {
|
||||
df <- unnest(df,`_source.ud`)
|
||||
lemmas <- str_c(unlist(df$lemma)[which(unlist(df$upos) != 'PUNCT')], unlist(df$upos)[which(unlist(df$upos) != 'PUNCT')], sep = '_', collapse = ' ') %>%
|
||||
# Regex removes all words consisting of or containing numbers, @#$%
|
||||
# Punctuation is not taken into account, as it is already filtered out, see above
|
||||
{if(clean == T) str_replace_all(.,"\\S*?[0-9@#$%]+[^\\s]*", "") else . }
|
||||
# In the very rare but obviously occuring (CxqrOmMB4Bzg6Uhtzw0P) case that a document consists only of punctuation, return an empty string
|
||||
if (length(lemmas) == 0 ){
|
||||
lemmas <- ''
|
||||
}
|
||||
return(lemmas)
|
||||
}
|
||||
# Replacing $-marked punctuation with their regular forms
|
||||
lemmas <- str_replace_all(lemmas," \\$(.+?)", "\\1") %>%
|
||||
# Regex removes all words consisting of or containing numbers, @#$%
|
||||
# Punctuation is only filtered out when not followed by a whitespace character, and when the word contains any of the characters above
|
||||
# Regex also used in out_parser
|
||||
{if(clean == T) str_replace_all(.,"\\S*?[0-9@#$%]+([^\\s!?.,;:]|[!?.,:;]\\S)*", "") else . } %>%
|
||||
# Adding extra . at end of string to allow for strings that contain less than 150 words and do not end on ". "
|
||||
paste0(.,". ")
|
||||
return(lemmas)
|
||||
}
|
@ -1,47 +1,59 @@
|
||||
#' Merges list of lemmas back into a pseudo-document
|
||||
#'
|
||||
#' Merges list of lemmas back into a pseudo-document
|
||||
#' @param row A row number form the Elasticizer-generated data frame
|
||||
#' @param words String indicating the number of words to keep from each document (maximum document length), 999 indicates the whole document
|
||||
#' @param out The elasticizer-generated data frame
|
||||
#' @param text String indicating whether the "merged" field will contain the "full" text, old-style "lemmas" (will be deprecated), new-style "ud"
|
||||
#' @param clean Boolean indicating whether the results should be cleaned by removing words matching regex (see code).
|
||||
#' @return A documentified string of lemmas, one document at a time
|
||||
#' @export
|
||||
#' @examples
|
||||
#' merger(1, words = '999', out, text)
|
||||
#' merger(out, text, clean)
|
||||
#################################################################################################
|
||||
#################################### Reconstructing documents from lemmas########################
|
||||
#################################################################################################
|
||||
## Only merging lemmas for now, feature selection has no impact on junk classification
|
||||
merger <- function(row, out, text, clean) {
|
||||
df <- out[row,]
|
||||
# Mergin lemmas into single string
|
||||
if (text == 'lemmas') {
|
||||
lemmas <- paste(str_split(df$`_source.tokens.lemmas`, "\\|")[[1]],collapse = ' ')
|
||||
}
|
||||
if (text == 'ud') {
|
||||
lemmas <- paste0(df$`_source.ud`[[1]]$lemma[[1]], collapse = ' ')
|
||||
}
|
||||
merger <- function(out, text, clean) {
|
||||
df <- unnest(out, cols = '_source.ud') %>%
|
||||
unnest(cols = c('lemma','upos')) %>%
|
||||
# This line is added in the new merger function, in the old merger function this would result in the following:
|
||||
# 1: when using ud, it would result in the string "NA" being present in place of the faulty lemma
|
||||
# 2: when using ud_upos, it would result in the entire article becoming NA, because of str_c() returning NA when any value is NA
|
||||
filter(!is.na(lemma)) %>%
|
||||
group_by(`_id`)
|
||||
if (text == 'ud_upos') {
|
||||
df <- unnest(df,`_source.ud`)
|
||||
lemmas <- str_c(unlist(df$lemma)[which(unlist(df$upos) != 'PUNCT')], unlist(df$upos)[which(unlist(df$upos) != 'PUNCT')], sep = '_', collapse = ' ') %>%
|
||||
df <- df %>%
|
||||
filter(upos != 'PUNCT') %>%
|
||||
mutate(
|
||||
lem_u = str_c(lemma,upos,sep="_")
|
||||
) %>%
|
||||
summarise(
|
||||
merged = str_c(c(lem_u), collapse= ' ')
|
||||
) %>%
|
||||
# Regex removes all words consisting of or containing numbers, @#$%
|
||||
# Punctuation is not taken into account, as it is already filtered out, see above
|
||||
{if(clean == T) str_replace_all(.,"\\S*?[0-9@#$%]+[^\\s]*", "") else . }
|
||||
# In the very rare but obviously occuring (CxqrOmMB4Bzg6Uhtzw0P) case that a document consists only of punctuation, return an empty string
|
||||
if (length(lemmas) == 0 ){
|
||||
lemmas <- ''
|
||||
}
|
||||
return(lemmas)
|
||||
{if(clean == T) mutate(.,
|
||||
merged = str_replace_all(merged,"\\S*?[0-9@#$%]+[^\\s]*", "")
|
||||
)
|
||||
else . }
|
||||
}
|
||||
if (text == 'ud') {
|
||||
df <- df %>%
|
||||
summarise(
|
||||
merged = str_c(c(lemma), collapse= ' ')
|
||||
) %>%
|
||||
mutate(
|
||||
merged = str_replace_all(merged," \\$(.+?)", "\\1")
|
||||
) %>%
|
||||
# Regex removes all words consisting of or containing numbers, @#$%
|
||||
# Punctuation is only filtered out when not followed by a whitespace character, and when the word contains any of the characters above
|
||||
# Regex also used in out_parser
|
||||
# Adding extra . at end of string to allow for strings that contain less than 150 words and do not end on ". "
|
||||
{if(clean == T) mutate(.,
|
||||
merged = str_replace_all(merged,"\\S*?[0-9@#$%]+([^\\s!?.,;:]|[!?.,:;]\\S)*", "")
|
||||
)
|
||||
else . } %>%
|
||||
mutate(.,
|
||||
merged = paste0(merged,'. '))
|
||||
}
|
||||
# Replacing $-marked punctuation with their regular forms
|
||||
lemmas <- str_replace_all(lemmas," \\$(.+?)", "\\1") %>%
|
||||
# Regex removes all words consisting of or containing numbers, @#$%
|
||||
# Punctuation is only filtered out when not followed by a whitespace character, and when the word contains any of the characters above
|
||||
# Regex also used in out_parser
|
||||
{if(clean == T) str_replace_all(.,"\\S*?[0-9@#$%]+([^\\s!?.,;:]|[!?.,:;]\\S)*", "") else . } %>%
|
||||
# Adding extra . at end of string to allow for strings that contain less than 150 words and do not end on ". "
|
||||
paste0(.,". ")
|
||||
return(lemmas)
|
||||
return(df)
|
||||
}
|
||||
|
Loading…
Reference in new issue