actor_fetcher: integrated party merging into actor_fetcher in what hopefully is the most efficient way

master
Erik de Vries 6 years ago
parent 84df9658ff
commit 526270900c

@ -31,9 +31,40 @@ actor_fetcher <- function(out, sent_dict = NULL, cores = 1, localhost = NULL, va
return(cbind(out_row[row,],data.frame(actor = actor)))
}
aggregator <- function (pid, dupe_df) {
### Party ids excluding actors
p_ids <- c(str_c(pid,'_f'),str_c(pid,'_s'))
### Party ids including actors
p_ids_a <- c(p_ids,str_c(pid,'_a'))
summarizer <- function (p_ids, out_row, merged_id) {
return(
out_row %>%
filter(ids %in% p_ids) %>%
summarise(
`_id` = first(`_id`),
`_source.doctype` = first(`_source.doctype`),
`_source.publication_date` = first(`_source.publication_date`),
prom = list(length(unique(unlist(sentence_id)))/round(occ[[1]]/prom[[1]])),
sentence_id = list(sort(unique(unlist(sentence_id)))),
rel_first = list(max(unlist(rel_first))),
ids = merged_id,
occ = list(length(unique(unlist(sentence_id)))),
first = list(min(unlist(sentence_id))),
actor_start = list(sort(unique(unlist(actor_start)))),
actor_end = list(sort(unique(unlist(actor_end)))),
sentence_start = list(sort(unique(unlist(sentence_start)))),
sentence_end = list(sort(unique(unlist(sentence_end))))
)
)
}
party <- summarizer(p_ids, dupe_df, str_c(pid,'_mfs'))
party_actor <- summarizer(p_ids_a, dupe_df, str_c(pid,'_mfsa'))
return(bind_rows(party,party_actor))
}
par_sent <- function(row, out, sent_dict = NULL) {
out_row <- out[row,]
### Generating actor dataframe, unnest by actorsDetail, then by actor ids. Filter out non-relevant actor ids.
### Generating sentence-level sentiment scores from ud
if (is.null(sent_dict) == F) {
ud_sent <- out_row$`_source.ud`[[1]] %>%
select(-one_of('exists')) %>%
@ -58,8 +89,51 @@ actor_fetcher <- function(out, sent_dict = NULL, cores = 1, localhost = NULL, va
sent = sent_sum/words,
arousal = sent_words/words
)
out_row <- select(out_row, -`_source.ud`) %>%
unnest(`_source.computerCodes.actorsDetail`, .preserve = colnames(.))
}
### Unnest out_row to individual actor ids
out_row <- select(out_row, -`_source.ud`) %>%
unnest(`_source.computerCodes.actorsDetail`, .preserve = colnames(.)) %>%
unnest(ids, .preserve = colnames(.)) %>%
select(-ids) %>%
rename(ids = ids1) %>%
mutate(
pids = str_sub(ids, start = 1, end = -3)
)
### Get list of party ids occuring more than once in the document
pids_table <- table(out_row$pids)
dupe_pids <- names(pids_table[pids_table > 1])
single_pids <- names(pids_table[pids_table <= 1]) %>%
str_subset(pattern = fixed('P_'))
### Data frame containing only duplicate party ids
dupe_df <- out_row %>%
filter(pids %in% dupe_pids)
### Data frame containing only single party ids
single_df <- out_row %>%
filter(pids %in% single_pids)
### Data frame for single occurrence mfsa
single_party_actor <- single_df %>%
mutate(
ids = str_c(pids,'_mfsa')
)
### Data frame for single occurence mfs
single_party <- single_df %>%
filter(!endsWith(ids, '_a')) %>%
mutate(
ids = str_c(pids,'_mfs')
)
out_row <- out_row %>%
filter(startsWith(ids,'A_')) %>%
bind_rows(., single_party, single_party_actor)
### For each of the party ids in the list above, aggregate to _mfs and _mfsa
if (length(dupe_pids) > 0) {
aggregate <- bind_rows(lapply(dupe_pids, aggregator, dupe_df = dupe_df))
out_row <- bind_rows(out_row, aggregate)
}
### Generating sentiment scores for article and actors
if (is.null(sent_dict) == F) {
### Aggregated sentiment per article (over all sentences in article)
text_sent <- summarise(ud_sent,
sent = sum(sent_sum)/sum(words),
@ -75,8 +149,6 @@ actor_fetcher <- function(out, sent_dict = NULL, cores = 1, localhost = NULL, va
select(-sentence_id)
out_row <- cbind(out_row, codes = codes_sent)
}
} else {
out_row <- unnest(out_row, `_source.computerCodes.actorsDetail`, .preserve = colnames(out_row))
}
out_row <- out_row %>%
mutate(
@ -88,7 +160,8 @@ actor_fetcher <- function(out, sent_dict = NULL, cores = 1, localhost = NULL, va
select(-`_source.computerCodes.actorsDetail`,
-`_score`,
-`_index`,
-`_type`)
-`_type`,
-pids)
return(out_row)
}
saveRDS(bind_rows(future_lapply(1:nrow(out), par_sent, out = out, sent_dict = sent_dict)), file = paste0('df_out',as.numeric(as.POSIXct(Sys.time())),'.Rds'))

Loading…
Cancel
Save