master
parent
edd4b785a5
commit
6f5ace8c52
@ -0,0 +1,95 @@
|
||||
#' Generate actor data frames (with sentiment) from database
|
||||
#'
|
||||
#' Generate actor data frames (with sentiment) from database
|
||||
#' @param out Data frame produced by elasticizer
|
||||
#' @param sent_dict Optional dataframe containing the sentiment dictionary (see sentiment paper scripts for details on format)
|
||||
#' @param cores Number of threads to use for parallel processing
|
||||
#' @param validation Boolean indicating whether human validation should be performed on sentiment scoring
|
||||
#' @return No return value, data per batch is saved in an RDS file
|
||||
#' @export
|
||||
#' @examples
|
||||
#' actor_fetcher(out, sent_dict = NULL, cores = 1)
|
||||
#################################################################################################
|
||||
#################################### Aggregate actor results ################################
|
||||
#################################################################################################
|
||||
actor_fetcher <- function(out, sent_dict = NULL, cores = 1, localhost = NULL, validation = F) {
|
||||
plan(multiprocess, workers = cores)
|
||||
### Functions
|
||||
### Calculate sentiment scores for each actor-document
|
||||
sent_scorer <- function(row, out_row, ud_sent) {
|
||||
### Contains sentiment per sentence for actor
|
||||
actor_tone <- filter(ud_sent, sentence_id %in% unlist(out_row[row,]$sentence_id))
|
||||
|
||||
### Aggregated sentiment per actor (over all sentences containing actor)
|
||||
actor <- summarise(actor_tone,
|
||||
sent = sum(sent_sum)/sum(words),
|
||||
sent_sum = sum(sent_sum),
|
||||
sent_words = sum(sent_words),
|
||||
words = sum(words),
|
||||
arousal = sum(sent_words)/sum(words)
|
||||
)
|
||||
return(cbind(out_row[row,],data.frame(actor = actor)))
|
||||
}
|
||||
|
||||
par_sent <- function(row, out, sent_dict = NULL) {
|
||||
out_row <- out[row,]
|
||||
### Generating actor dataframe, unnest by actorsDetail, then by actor ids. Filter out non-relevant actor ids.
|
||||
if (is.null(sent_dict) == F) {
|
||||
ud_sent <- out_row$`_source.ud`[[1]] %>%
|
||||
select(-one_of('exists')) %>%
|
||||
unnest() %>%
|
||||
filter(upos != 'PUNCT') %>% # For getting proper word counts
|
||||
mutate(V1 = str_c(lemma,'_',upos)) %>%
|
||||
left_join(sent_dict, by = 'V1') %>%
|
||||
### Setting binary sentiment as unit of analysis
|
||||
mutate(V2 = V3) %>%
|
||||
group_by(sentence_id) %>%
|
||||
mutate(
|
||||
V2 = case_when(
|
||||
is.na(V2) == T ~ 0,
|
||||
TRUE ~ V2
|
||||
)
|
||||
) %>%
|
||||
summarise(sent_sum = sum(V2),
|
||||
words = length(lemma),
|
||||
sent_words = length(na.omit(V3))) %>%
|
||||
mutate(
|
||||
sent = sent_sum/words,
|
||||
arousal = sent_words/words
|
||||
)
|
||||
out_row <- select(out_row, -`_source.ud`) %>%
|
||||
unnest(`_source.computerCodes.actorsDetail`, .preserve = colnames(.))
|
||||
### Aggregated sentiment per article (over all sentences in article)
|
||||
text_sent <- summarise(ud_sent,
|
||||
sent = sum(sent_sum)/sum(words),
|
||||
sent_sum = sum(sent_sum),
|
||||
sent_words = sum(sent_words),
|
||||
words = sum(words),
|
||||
arousal = sum(sent_words)/sum(words)
|
||||
)
|
||||
out_row <- bind_rows(lapply(seq(1,nrow(out_row),1),sent_scorer, out_row = out_row, ud_sent = ud_sent)) %>%
|
||||
cbind(., text = text_sent)
|
||||
if (validation == T) {
|
||||
codes_sent <- filter(ud_sent, sentence_id == out_row$`_source.codes.sentence.id`[1]) %>%
|
||||
select(-sentence_id)
|
||||
out_row <- cbind(out_row, codes = codes_sent)
|
||||
}
|
||||
} else {
|
||||
out_row <- unnest(out_row, `_source.computerCodes.actorsDetail`, .preserve = colnames(.))
|
||||
}
|
||||
out_row <- out_row %>%
|
||||
mutate(
|
||||
year = strftime(`_source.publication_date`, format = '%Y'),
|
||||
yearmonth = strftime(`_source.publication_date`, format = '%Y%m'),
|
||||
yearmonthday = strftime(`_source.publication_date`, format = '%Y%m%d'),
|
||||
yearweek = strftime(`_source.publication_date`, format = "%Y%V")
|
||||
) %>%
|
||||
select(-`_source.computerCodes.actorsDetail`,
|
||||
-`_score`,
|
||||
-`_index`,
|
||||
-`_type`)
|
||||
return(out_row)
|
||||
}
|
||||
saveRDS(bind_rows(future_lapply(1:nrow(out), par_sent, out = out, sent_dict = sent_dict)), file = paste0('df_out',as.numeric(as.POSIXct(Sys.time())),'.Rds'))
|
||||
return()
|
||||
}
|
@ -0,0 +1,27 @@
|
||||
% Generated by roxygen2: do not edit by hand
|
||||
% Please edit documentation in R/actor_fetcher.R
|
||||
\name{actor_fetcher}
|
||||
\alias{actor_fetcher}
|
||||
\title{Generate actor data frames (with sentiment) from database}
|
||||
\usage{
|
||||
actor_fetcher(out, sent_dict = NULL, cores = 1, localhost = NULL,
|
||||
validation = F)
|
||||
}
|
||||
\arguments{
|
||||
\item{out}{Data frame produced by elasticizer}
|
||||
|
||||
\item{sent_dict}{Optional dataframe containing the sentiment dictionary (see sentiment paper scripts for details on format)}
|
||||
|
||||
\item{cores}{Number of threads to use for parallel processing}
|
||||
|
||||
\item{validation}{Boolean indicating whether human validation should be performed on sentiment scoring}
|
||||
}
|
||||
\value{
|
||||
No return value, data per batch is saved in an RDS file
|
||||
}
|
||||
\description{
|
||||
Generate actor data frames (with sentiment) from database
|
||||
}
|
||||
\examples{
|
||||
actor_fetcher(out, sent_dict = NULL, cores = 1)
|
||||
}
|
Loading…
Reference in new issue