actorizer: Removed nested parallelization function

query_gen_actors: Integrated startDate and endDate for parties, changed party exception method from abbreviation only to both full names and abbreviations for NL and BE
master
Your Name 5 years ago
parent 5de4e1488c
commit b406304c80

@ -14,126 +14,114 @@
#' @examples
#' actorizer(out, localhost = F, ids, prefix, postfix, identifier, es_super)
actorizer <- function(out, localhost = F, ids, prefix, postfix, pre_tags, post_tags, es_super, ver) {
sentencizer <- function(row, out, ids, prefix, postfix, pre_tags, post_tags, pre_tags_regex, post_tags_regex) {
doc <- out[row,]
if (sum(nchar(doc$merged) > 990000)) {
stop("One or more documents in this batch exceed 990000 characters")
}
# Extracting ud output from document
ud <- doc %>%
select(`_id`,`_source.ud`, merged) %>%
unnest(cols = c("_source.ud")) %>%
select(`_id`,lemma,start,end, sentence_id,merged) %>%
unnest(cols = colnames(.))
sentences <- ud %>%
group_by(`_id`, sentence_id) %>%
summarise(
sentence_start = min(start),
sentence_end = max(end)
) %>%
mutate(
sentence_count = n()
)
hits <- left_join(ud, markers, by='_id') %>%
mutate(
actor = case_when(
start <= marker_start & end >= marker_start ~ T,
T ~ F
)
) %>%
select(`_id`, sentence_id, start, end,actor,merged) %>%
filter(actor) %>%
group_by(`_id`,sentence_id) %>%
summarise(
actor = any(actor),
actor_start = I(list(start)),
actor_end = I(list(end)),
n_markers = length(start),
merged = first(merged)
) %>%
left_join(.,sentences, by=c('_id','sentence_id')) %>%
ungroup %>%
arrange(`_id`,sentence_id) %>%
group_by(`_id`) %>%
mutate(n_markers = cumsum(n_markers)) %>%
mutate(
sentence_start_tags = sentence_start+((nchar(pre_tags)+nchar(post_tags))*(lag(n_markers, default = 0))),
sentence_end_tags = sentence_end+((nchar(pre_tags)+nchar(post_tags))*(n_markers))
) %>%
mutate(
sentence = paste0(' ',str_sub(merged, sentence_start_tags, sentence_end_tags),' ')
) %>%
select(-merged) %>%
ungroup()
# Conducting regex filtering on matches only when there is a prefix and/or postfix to apply
if (!is.na(prefix) || !is.na(postfix)) {
### If no pre or postfixes, match *not nothing* i.e. anything
if (is.na(prefix)) {
prefix = '$^'
}
if (is.na(postfix)) {
postfix = '$^'
}
hits <- hits %>%
filter(
!str_detect(sentence, paste0(post_tags_regex,'(',postfix,')')) & !str_detect(sentence, paste0('(',prefix,')',pre_tags_regex))
)
}
hits <- hits %>%
group_by(`_id`) %>%
summarise(
sentence_id = list(as.integer(sentence_id)),
sentence_start = list(sentence_start),
sentence_end = list(sentence_end),
actor_start = I(list(unlist(actor_start))), # List of actor ud token start positions
actor_end = I(list(unlist(actor_end))), # List of actor ud token end positions
occ = length(unique(unlist(sentence_id))), # Number of sentences in which actor occurs
first = min(unlist(sentence_id)), # First sentence in which actor is mentioned
ids = I(list(ids)),
sentence_count = first(sentence_count)# List of actor ids
) %>%
mutate(
prom = occ/sentence_count, # Relative prominence of actor in article (number of occurences/total # sentences)
rel_first = 1-(first/sentence_count), # Relative position of first occurence at sentence level
) %>%
select(`_id`:occ, prom,rel_first,first,ids)
return(hits)
}
out <- mamlr:::out_parser(out, field = 'highlight', clean = F)
offsetter <- function(x, pre_tags, post_tags) {
return(as.list(as.data.frame(x-((row(x)-1)*(nchar(pre_tags)+nchar(post_tags))))))
}
out <- mamlr:::out_parser(out, field = 'highlight', clean = F)
prefix[prefix==''] <- NA
postfix[postfix==''] <- NA
pre_tags_regex <- gsub("([.|()\\^{}+$*?]|\\[|\\])", "\\\\\\1", pre_tags)
post_tags_regex <- gsub("([.|()\\^{}+$*?]|\\[|\\])", "\\\\\\1", post_tags)
out$markers <- future_lapply(str_locate_all(out$merged,coll(pre_tags)), offsetter, pre_tags = pre_tags, post_tags = post_tags)
out$markers <- lapply(str_locate_all(out$merged,coll(pre_tags)), offsetter, pre_tags = pre_tags, post_tags = post_tags)
markers <- out %>%
select(`_id`,markers) %>%
unnest_wider(markers) %>%
rename(marker_start = start, marker_end = end) %>%
unnest(colnames(.))
# ids <- fromJSON(ids)
updates <- sentencizer(1:1024,
out = out,
ids = ids,
postfix = postfix,
prefix=prefix,
pre_tags_regex = pre_tags_regex,
pre_tags = pre_tags,
post_tags_regex = post_tags_regex,
post_tags = post_tags)
if (nrow(updates) == 0) {
if (sum(nchar(out$merged) > 990000) > 0) {
stop("One or more documents in this batch exceed 990000 characters")
}
# Extracting ud output from document
ud <- out %>%
select(`_id`,`_source.ud`, merged) %>%
unnest(cols = c("_source.ud")) %>%
select(`_id`,lemma,start,end, sentence_id,merged) %>%
unnest(cols = colnames(.))
sentences <- ud %>%
group_by(`_id`, sentence_id) %>%
summarise(
sentence_start = min(start),
sentence_end = max(end)
) %>%
mutate(
sentence_count = n()
)
hits <- left_join(ud, markers, by='_id') %>%
mutate(
actor = case_when(
start <= marker_start & end >= marker_start ~ T,
T ~ F
)
) %>%
select(`_id`, sentence_id, start, end,actor,merged) %>%
filter(actor) %>%
group_by(`_id`,sentence_id) %>%
summarise(
actor = any(actor),
actor_start = I(list(start)),
actor_end = I(list(end)),
n_markers = length(start),
merged = first(merged)
) %>%
left_join(.,sentences, by=c('_id','sentence_id')) %>%
ungroup %>%
arrange(`_id`,sentence_id) %>%
group_by(`_id`) %>%
mutate(n_markers = cumsum(n_markers)) %>%
mutate(
sentence_start_tags = sentence_start+((nchar(pre_tags)+nchar(post_tags))*(lag(n_markers, default = 0))),
sentence_end_tags = sentence_end+((nchar(pre_tags)+nchar(post_tags))*(n_markers))
) %>%
mutate(
sentence = paste0(' ',str_sub(merged, sentence_start_tags, sentence_end_tags),' ')
) %>%
select(-merged) %>%
ungroup()
# Conducting regex filtering on matches only when there is a prefix and/or postfix to apply
if (!is.na(prefix) || !is.na(postfix)) {
### If no pre or postfixes, match *not nothing* i.e. anything
if (is.na(prefix)) {
prefix = '$^'
}
if (is.na(postfix)) {
postfix = '$^'
}
hits <- hits %>%
filter(
!str_detect(sentence, paste0(post_tags_regex,'(',postfix,')')) & !str_detect(sentence, paste0('(',prefix,')',pre_tags_regex))
)
}
hits <- hits %>%
group_by(`_id`) %>%
summarise(
sentence_id = list(as.integer(sentence_id)),
sentence_start = list(sentence_start),
sentence_end = list(sentence_end),
actor_start = I(list(unlist(actor_start))), # List of actor ud token start positions
actor_end = I(list(unlist(actor_end))), # List of actor ud token end positions
occ = length(unique(unlist(sentence_id))), # Number of sentences in which actor occurs
first = min(unlist(sentence_id)), # First sentence in which actor is mentioned
ids = I(list(ids)),
sentence_count = first(sentence_count)# List of actor ids
) %>%
mutate(
prom = occ/sentence_count, # Relative prominence of actor in article (number of occurrences/total # sentences)
rel_first = 1-(first/sentence_count), # Relative position of first occurrence at sentence level
) %>%
select(`_id`:occ, prom,rel_first,first,ids)
if (nrow(hits) == 0) {
print("Nothing to update for this batch")
return(NULL)
} else {
bulk <- apply(updates, 1, bulk_writer, varname ='actorsDetail', type = 'add', ver = ver)
bulk <- c(bulk,apply(updates[c(1,11)], 1, bulk_writer, varname='actors', type = 'add', ver = ver))
bulk <- apply(hits, 1, bulk_writer, varname ='actorsDetail', type = 'add', ver = ver)
bulk <- c(bulk,apply(hits[c(1,11)], 1, bulk_writer, varname='actors', type = 'add', ver = ver))
return(elastic_update(bulk, es_super = es_super, localhost = localhost))
}

@ -136,8 +136,8 @@ query_gen_actors <- function(actor, country, pre_tags, post_tags) {
### Query generation for party searches
if (actor$`_source.function` == "Party") {
actor$`_source.startDate` <- "2000-01-01"
actor$`_source.endDate` <- "2099-01-01"
# actor$`_source.startDate` <- "2000-01-01"
# actor$`_source.endDate` <- "2099-01-01"
if (nchar(actor$`_source.partyNameSearchShort`[[1]]) > 0) {
# If uk, no or dk, search for both regular abbreviations, and genitive forms
if (country == "uk" | country == "no" | country == "dk") {
@ -167,7 +167,7 @@ query_gen_actors <- function(actor, country, pre_tags, post_tags) {
ids <- str_c(actor$`_source.partyId`,'_f')
actorid <- str_c(actor$`_source.partyId`,'_f')
query <- generator(country, actor$`_source.startDate`, actor$`_source.endDate`, query_string, pre_tags, post_tags, actorid)
if (country == 'uk') {
if (country == 'uk' | country == 'nl' | country == 'be') {
df2 <- data.frame(query = query, ids = I(ids), prefix = actor$`_source.notPrecededBy`, postfix = actor$`_source.notFollowedBy`, stringsAsFactors = F)
} else {
df2 <- data.frame(query = query, ids = I(ids), prefix = NA, postfix = NA, stringsAsFactors = F)

Loading…
Cancel
Save