actor_aggregation: added sentiment analysis support for generating aggregations

master
Erik de Vries 6 years ago
parent d3d4045f1c
commit f8bc53006d

@ -22,29 +22,82 @@
################################################################################################# #################################################################################################
#################################### Aggregate actor results ################################ #################################### Aggregate actor results ################################
################################################################################################# #################################################################################################
actor_aggregation <- function(row, actors, es_pwd, localhost, default_operator = 'OR') { actor_aggregation <- function(row, actors, es_pwd, localhost, default_operator = 'OR', sent_dict = NULL, cores = detectCores()) {
### Functions ### Functions
aggregator <- function (id, duplicates) { aggregator <- function (id, duplicates) {
article <- filter(duplicates, `_id` == id) %>% df <- duplicates %>%
unnest(sentence_id, .preserve = colnames(.)) filter(`_id` == id) %>%
group_by(`_id`) %>%
summarise(
`_source.doctype` = first(`_source.doctype`),
`_source.publication_date` = first(`_source.publication_date`),
actor_end = list(sort(unique(unlist(actor_end)))),
prom = list(length(unique(unlist(sentence_id)))/round(occ[[1]]/prom[[1]])),
sentence_id = list(sort(unique(unlist(sentence_id)))),
rel_first = list(max(unlist(rel_first))),
sentence_end = list(sort(unique(unlist(sentence_end)))),
actor_start = list(sort(unique(unlist(actor_start)))),
ids = list(sort(unique(unlist(ids)))),
sentence_start = list(sort(unique(unlist(sentence_start)))),
occ = list(length(unique(unlist(sentence_id)))),
first = list(min(unlist(sentence_id)))
)
return(df)
}
### Calculate sentiment scores for each actor-document
par_sent <- function(row, out, sent_dict) {
out_row <- out[row,]
### Contains sentiment per sentence for whole article
sentiment_ud <- out_row$`_source.ud`[[1]] %>%
select(-one_of('exists')) %>%
unnest() %>%
filter(upos != 'PUNCT') %>% # For getting proper word counts
mutate(V1 = str_c(lemma,'_',upos)) %>%
left_join(sent_dict, by = 'V1') %>%
### Setting binary sentiment as unit of analysis
mutate(V2 = V3) %>%
group_by(sentence_id) %>%
mutate(
V2 = case_when(
is.na(V2) == T ~ 0,
TRUE ~ V2
)
) %>%
summarise(sent_sum = sum(V2),
words = length(lemma),
sent_words = length(na.omit(V3))) %>%
mutate(
sent = sent_sum/words,
arousal = sent_words/words
)
out_row <- select(out_row, -`_source.ud`)
### Contains sentiment per sentence for actor
actor_tone <- filter(sentiment_ud, sentence_id %in% unlist(out_row$sentence_id))
occ <- length(unlist(unique(article$sentence_id1))) ### Aggregated sentiment per actor (over all sentences containing actor)
sentence_count <- round(article$occ[[1]]/article$prom[[1]]) actor <- summarise(actor_tone,
prom <- occ/sentence_count sent = sum(sent_sum)/sum(words),
rel_first <- 1-(min(article$sentence_id1)/sentence_count) sent_sum = sum(sent_sum),
return(bind_cols(as.list(article[1,1:6]), # Sentence id, start and end position for actor sentences sent_words = sum(sent_words),
data.frame(occ = I(list(occ)), # Number of sentences in which actor occurs words = sum(words),
prom = I(list(prom)), # Relative prominence of actor in article (number of occurences/total # sentences) arousal = sum(sent_words)/sum(words)
rel_first = I(list(rel_first)), # Relative position of first occurence at sentence level
first = I(list(min(article$sentence_id1))) # First sentence in which actor is mentioned
)
) )
### Aggregated sentiment per article (over all sentences in article)
text <- summarise(sentiment_ud,
sent = sum(sent_sum)/sum(words),
sent_sum = sum(sent_sum),
sent_words = sum(sent_words),
words = sum(words),
arousal = sum(sent_words)/sum(words)
) )
return(cbind(out_row,data.frame(actor = actor, text = text)))
} }
### Creating aggregate measuers at daily, weekly, monthly and yearly level ### Creating aggregate measuers at daily, weekly, monthly and yearly level
grouper <- function(level, actor_df, actorids) { grouper <- function(level, out, actorids, sent = F) {
by_newspaper <- actor_df %>% by_newspaper <- out %>%
mutate( mutate(
sentence_count = round(unlist(occ)/unlist(prom)) sentence_count = round(unlist(occ)/unlist(prom))
) %>% ) %>%
@ -57,9 +110,9 @@ actor_aggregation <- function(row, actors, es_pwd, localhost, default_operator =
sentence_count = sum(sentence_count), sentence_count = sum(sentence_count),
articles = length(`_id`), articles = length(`_id`),
level = level level = level
) ) %>%
ungroup()
aggregate <- actor_df %>% aggregate <- out %>%
mutate( mutate(
sentence_count = round(unlist(occ)/unlist(prom)) sentence_count = round(unlist(occ)/unlist(prom))
) %>% ) %>%
@ -73,12 +126,64 @@ actor_aggregation <- function(row, actors, es_pwd, localhost, default_operator =
articles = length(`_id`), articles = length(`_id`),
`_source.doctype` = 'agg', `_source.doctype` = 'agg',
level = level level = level
) ) %>%
ungroup()
if(sent == T) {
by_newspaper_sent <- out %>%
group_by_at(vars(level, `_source.doctype`)) %>%
summarise(
actor.sent = mean(actor.sent),
actor.sent_sum = sum(actor.sent_sum),
actor.sent_words = sum(actor.sent_words),
actor.words = sum(actor.words),
actor.arousal = mean(actor.arousal),
text.sent = mean(text.sent),
text.sent_sum = sum(text.sent_sum),
text.sent_words = sum(text.sent_words),
text.words = sum(text.words),
text.arousal = mean(text.arousal)
) %>%
ungroup() %>%
select(-level,-`_source.doctype`)
aggregate_sent <- out %>%
group_by_at(vars(level)) %>%
summarise(
actor.sent = mean(actor.sent),
actor.sent_sum = sum(actor.sent_sum),
actor.sent_words = sum(actor.sent_words),
actor.words = sum(actor.words),
actor.arousal = mean(actor.arousal),
text.sent = mean(text.sent),
text.sent_sum = sum(text.sent_sum),
text.sent_words = sum(text.sent_words),
text.words = sum(text.words),
text.arousal = mean(text.arousal)
) %>%
ungroup() %>%
select(-level)
aggregate <- bind_cols(aggregate,aggregate_sent)
by_newspaper <- bind_cols(by_newspaper, by_newspaper_sent)
}
output <- bind_rows(by_newspaper, aggregate) %>% output <- bind_rows(by_newspaper, aggregate) %>%
bind_cols(.,bind_rows(actor)[rep(seq_len(nrow(bind_rows(actor))), each=nrow(.)),]) bind_cols(.,bind_rows(actor)[rep(seq_len(nrow(bind_rows(actor))), each=nrow(.)),]) %>%
select(
-`_index`,
-`_type`,
-`_score`,
-`_id`,
-contains('Search'),
-contains('not')
)
colnames(output) <- gsub("_source.",'', colnames(output))
return(output) return(output)
} }
########################################################################################### ###########################################################################################
if (is.null(sent_dict) == F) {
fields <- c('ud','computerCodes.actorsDetail', 'doctype', 'publication_date')
} else {
fields <- c('computerCodes.actorsDetail', 'doctype', 'publication_date')
}
actor <- actors[row,] actor <- actors[row,]
if (actor$`_source.function` == "Party"){ if (actor$`_source.function` == "Party"){
years = seq(2000,2019,1) years = seq(2000,2019,1)
@ -101,43 +206,66 @@ actor_aggregation <- function(row, actors, es_pwd, localhost, default_operator =
actor_aggregator <- function(year, query, actor, actorids, default_operator, localhost = F, es_pwd) { actor_aggregator <- function(year, query, actor, actorids, default_operator, localhost = F, es_pwd) {
if (year > 0) { if (year > 0) {
query <- paste0('computerCodes.actors:(',paste(actorids, collapse = ' '),') && publication_date:[',year,'-01-01 TO ',year,'-12-31] && computerCodes.junk:0') query <- paste0('computerCodes.actors:(',paste(actorids, collapse = ' '),') && publication_date:[',year,'-01-01 TO ',year,'-12-31]')
} else { } else {
query <- paste0('computerCodes.actors:(',paste(actorids, collapse = ' '),') && publication_date:[',actor$`_source.startDate`,' TO ',actor$`_source.endDate`,'] && computerCodes.junk:0') query <- paste0('computerCodes.actors:(',paste(actorids, collapse = ' '),') && publication_date:[',actor$`_source.startDate`,' TO ',actor$`_source.endDate`,']')
}
### Temporary exception for UK missing junk coding
if (actor$`_source.country` != 'uk') {
query <- paste0(query,' && computerCodes.junk:0')
} }
out <- elasticizer(query_string(paste0('country:',actor$`_source.country`,' && ',query), out <- elasticizer(query_string(paste0('country:',actor$`_source.country`,' && ',query),
fields = c('computerCodes.actorsDetail', 'doctype', 'publication_date'), default_operator = default_operator), fields = fields, default_operator = default_operator),
localhost = localhost, localhost = localhost,
es_pwd = es_pwd) es_pwd = es_pwd)
if (length(out$`_id`) > 0 ) { if (length(out$`_id`) > 0 ) {
actor_df <- out if (is.null(sent_dict) == F) {
out_ud <- out %>% select(`_id`,`_source.ud`)
out <- out %>% select(-`_source.ud`)
}
### Generating actor dataframe, unnest by actorsDetail, then by actor ids. Filter out non-relevant actor ids. ### Generating actor dataframe, unnest by actorsDetail, then by actor ids. Filter out non-relevant actor ids.
actor_df <- actor_df %>% out <- out %>%
unnest() %>% unnest(`_source.computerCodes.actorsDetail`, .preserve = colnames(.)) %>%
unnest(ids, .preserve = colnames(.)) %>% unnest(ids, .preserve = colnames(.)) %>%
filter(ids1 %in% actorids) %>% filter(ids1 %in% actorids) # %>%
select(-ends_with('start')) %>% # select(-ends_with('start')) %>%
select(-ends_with('end')) %>% # select(-ends_with('end')) %>%
select(-starts_with('ids')) # select(-starts_with('ids'))
### Only if there are more rows than articles, recalculate ### Only if there are more rows than articles, recalculate
if (length(unique(actor_df$`_id`)) != length(actor_df$`_id`)) { if (length(unique(out$`_id`)) != length(out$`_id`)) {
duplicates <- actor_df[(duplicated(actor_df$`_id`) | duplicated(actor_df$`_id`, fromLast = T)),] duplicates <- out[(duplicated(out$`_id`) | duplicated(out$`_id`, fromLast = T)),]
actor_single <- actor_df[!(duplicated(actor_df$`_id`) | duplicated(actor_df$`_id`, fromLast = T)),] actor_single <- out[!(duplicated(out$`_id`) | duplicated(out$`_id`, fromLast = T)),]
art_id <- unique(duplicates$`_id`) art_id <- unique(duplicates$`_id`)
dupe_merged <- bind_rows(lapply(art_id, aggregator, duplicates = duplicates)) dupe_merged <- bind_rows(mclapply(art_id, aggregator, duplicates = duplicates, mc.cores = cores))
actor_df <- bind_rows(dupe_merged, actor_single) out <- bind_rows(dupe_merged, actor_single)
} }
if (is.null(sent_dict) == F) {
out <- left_join(out, out_ud, by = '_id')
out <- bind_rows(mclapply(seq(1,nrow(out),1),par_sent, out = out, sent_dict = sent_dict, mc.cores = cores))
}
### Creating date grouping variables ### Creating date grouping variables
actor_df <- actor_df %>% out <- out %>%
mutate( mutate(
year = strftime(`_source.publication_date`, format = '%Y'), year = strftime(`_source.publication_date`, format = '%Y'),
yearmonth = strftime(actor_df$`_source.publication_date`, format = '%Y%m'), yearmonth = strftime(out$`_source.publication_date`, format = '%Y%m'),
yearmonthday = strftime(actor_df$`_source.publication_date`, format = '%Y%m%d'), yearmonthday = strftime(out$`_source.publication_date`, format = '%Y%m%d'),
yearweek = strftime(actor_df$`_source.publication_date`, format = "%Y%V") yearweek = strftime(out$`_source.publication_date`, format = "%Y%V")
) %>%
select(
-`_score`,
-`_index`,
-`_type`,
-`_score`,
-`_source.computerCodes.actorsDetail`,
-ids1
) )
levels <- c('year','yearmonth','yearmonthday','yearweek') levels <- c('year','yearmonth','yearmonthday','yearweek')
aggregate_data <- bind_rows(lapply(levels, grouper, actor_df = actor_df, actorids = actorids)) aggregate_data <- bind_rows(lapply(levels, grouper, out = out, actorids = actorids, sent = !is.null(sent_dict)))
return(aggregate_data) return(aggregate_data)
} else { } else {
return() return()
@ -147,4 +275,3 @@ actor_aggregation <- function(row, actors, es_pwd, localhost, default_operator =
print(paste0('Done with ',row,'/',nrow(actors),' actors')) print(paste0('Done with ',row,'/',nrow(actors),' actors'))
return() return()
} }

Loading…
Cancel
Save