sentencizer: added new function for sentiment coding and actor collection

master
Your Name 5 years ago
parent 7f958bbc11
commit 98325bde8f

@ -20,4 +20,4 @@ Depends: R (>= 3.3.1),
License: Copyright Erik de Vries License: Copyright Erik de Vries
Encoding: UTF-8 Encoding: UTF-8
LazyData: true LazyData: true
RoxygenNote: 6.1.1 RoxygenNote: 7.1.0

@ -20,4 +20,5 @@ export(out_parser)
export(preproc) export(preproc)
export(query_gen_actors) export(query_gen_actors)
export(query_string) export(query_string)
export(sentencizer)
export(ud_update) export(ud_update)

@ -0,0 +1,94 @@
#' Generate actor data frames (with sentiment) from database
#'
#' Generate actor data frames (with sentiment) from database
#' @param out Data frame produced by elasticizer
#' @param sent_dict Optional dataframe containing the sentiment dictionary and values. Words should be either in the "lem_u" column when they consist of lemma_upos pairs, or in the "lemma" column when they are just lemmas. The "prox" column should either contain word values, or 0s if not applicable.
#' @return No return value, data per batch is saved in an RDS file
#' @export
#' @examples
#' sentencizer(out, sent_dict = NULL)
#################################################################################################
#################################### Aggregate actor results ################################
#################################################################################################
sentencizer <- function(out, sent_dict = NULL, localhost = NULL, validation = F) {
par_sent <- function(row, out, sent_dict = NULL) {
out <- out[row,]
metadata <- out %>%
select(`_id`,`_source.publication_date`, `_source.doctype`)
ud_sent <- out %>% select(`_id`,`_source.ud`) %>%
unnest(cols = colnames(.)) %>%
select(-one_of('exists')) %>%
unnest(cols = colnames(.)) %>%
filter(upos != 'PUNCT')
if (is.null(sent_dict) == F) {
if ("lem_u" %in% colnames(sent_dict)) {
ud_sent <- ud_sent %>%
mutate(lem_u = str_c(lemma,'_',upos)) %>%
left_join(sent_dict, by = 'lem_u')
} else if ("lemma" %in% colnames(sent_dict)) {
ud_sent <- ud_sent %>%
left_join(sent_dict, by = 'lemma') %>%
mutate(lem_u = lemma)
}
ud_sent <- ud_sent %>%
group_by(`_id`,sentence_id) %>%
mutate(
prox = case_when(
is.na(prox) == T ~ 0,
TRUE ~ prox
)
) %>%
summarise(sent_sum = sum(prox),
words = length(lemma),
sent_words = sum(prox != 0),
sent_lemmas = list(lem_u[prox != 0])) %>%
mutate(
sent = sent_sum/words,
arousal = sent_words/words
)
} else {
ud_sent <- ud_sent %>% group_by(sentence_id) %>% summarise()
}
out <- select(out, -`_source.ud`)
### Unnest out_row to individual actor ids
out <- out %>%
unnest(`_source.computerCodes.actorsDetail`) %>%
mutate(ids_list = ids) %>%
unnest(ids) %>%
unnest(sentence_id) %>%
group_by(`_id`,sentence_id) %>%
summarise(
ids = list(ids)
) %>%
left_join(ud_sent,.,by = c('_id','sentence_id')) %>%
group_by(`_id`)
text_sent <- out %>%
summarise(
text.sent_sum = sum(sent_sum),
text.words = sum(words),
text.sent_words = sum(sent_words),
text.sent_lemmas = I(list(unlist(sent_lemmas))),
text.sentences = n()
) %>%
mutate(
text.sent = text.sent_sum/text.words,
text.arousal = text.sent_words/text.words
)
out <- out %>%
summarise_all(list) %>%
left_join(.,text_sent,by='_id') %>%
left_join(.,metadata,by='_id')
return(out)
}
saveRDS(par_sent(1:nrow(out),out = out, sent_dict=sent_dict), file = paste0('df_out',as.numeric(as.POSIXct(Sys.time())),'.Rds'))
return()
### Keeping the option for parallel computation
# microbenchmark::microbenchmark(out_normal <- par_sent(1:nrow(out),out = out, sent_dict=sent_dict), times = 1)
# plan(multiprocess, workers = cores)
# chunks <- split(1:nrow(out), sort(1:nrow(out)%%cores))
# microbenchmark::microbenchmark(out_par <- bind_rows(future_lapply(chunks,par_sent, out=out, sent_dict=sent_dict)), times = 1)
}

@ -0,0 +1,22 @@
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/sentencizer.R
\name{sentencizer}
\alias{sentencizer}
\title{Generate actor data frames (with sentiment) from database}
\usage{
sentencizer(out, sent_dict = NULL, localhost = NULL, validation = F)
}
\arguments{
\item{out}{Data frame produced by elasticizer}
\item{sent_dict}{Optional dataframe containing the sentiment dictionary and values. Words should be either in the "lem_u" column when they consist of lemma_upos pairs, or in the "lemma" column when they are just lemmas. The "prox" column should either contain word values, or 0s if not applicable.}
}
\value{
No return value, data per batch is saved in an RDS file
}
\description{
Generate actor data frames (with sentiment) from database
}
\examples{
sentencizer(out, sent_dict = NULL)
}
Loading…
Cancel
Save